A Primal-Dual Exterior Point Method for Nonlinear Optimization
نویسندگان
چکیده
In this paper, primal-dual methods for general nonconvex nonlinear optimization problems are considered. The proposed methods are exterior point type methods that permit primal variables to violate inequality constraints during the iterations. The methods are based on the exact penalty type transformation of inequality constraints and use a smooth approximation of the problem to form primal-dual iteration based on Newton’s method as in usual primal-dual interior point methods. Global convergence and local superlinear/quadratic convergence of the proposed methods are proved. For global convergence, methods using line searches and trust region type searches are proposed. The trust region type method is tested with CUTEr problems and is shown to have similar efficiency to the primal-dual interior point method code IPOPT. It is also shown that the methods can be warm started easily, unlike interior point methods, and that the methods can be efficiently used in parametric programming problems.
منابع مشابه
Primal-dual exterior point method for convex optimization
We introduce and study the primal-dual exterior point (PDEP) method for convex optimization problems. The PDEP is based on the Nonlinear Rescaling (NR) multipliers method with dynamic scaling parameters update. The NR method at each step alternates finding the unconstrained minimizer of the Lagrangian for the equivalent problem with both Lagrange multipliers and scaling parameters vectors updat...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملA path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملPrimal-dual Interior-Point Methods with Asymmetric Barriers
In this paper we develop several polynomial-time interior-point methods (IPM) for solving nonlinear primal-dual conic optimization problem. We assume that the barriers for the primal and the dual cone are not conjugate. This broken symmetry does not allow to apply the standard primal-dual IPM. However, we show that in this situation it is also possible to develop very efficient optimization met...
متن کاملA primal-dual interior point method for nonlinear optimization over second-order cones
In this paper, we are concerned with nonlinear minimization problems with second order cone constraints. A primal-dual interior point method is proposed for solving the problems. We also propose a new primal-dual merit function by combining the barrier penalty function and the potential function within the framework of the line search strategy, and show the global convergence property of our me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 20 شماره
صفحات -
تاریخ انتشار 2010